Decoding the mechanism of hypertension through multiomics profiling

  • World Health Organisation. Cardiovascular diseases 2021. Retrieved from https://www.who.int/health-topics/hypertension#tab=tab_1.

  • Olsen MH, Angell SY, Asma S, Boutouyrie P, Burger D, Chirinos JA, et al. A call to action and a lifecourse strategy to address the global burden of raised blood pressure on current and future generations: the Lancet Commission on hypertension. Lancet. 2016;388:2665–712.

    Article 
    PubMed 

    Google Scholar
     

  • Kumar V, Abbas AK, Aster JC Robbins basic pathology e-book: Elsevier Health Sciences; 2017.

  • Morgado J, Sanches B, Anjos R, Coelho C. Programming of essential hypertension: what pediatric cardiologists need to know. Pediatr Cardiol. 2015;36:1327–37.

    Article 
    PubMed 

    Google Scholar
     

  • Patel RS, Masi S, Taddei S. Understanding the role of genetics in hypertension. Eur Heart J. 2017;38:2309–12.

    Article 
    PubMed 

    Google Scholar
     

  • Niiranen TJ, McCabe EL, Larson MG, Henglin M, Lakdawala NK, Vasan RS, et al. Risk for hypertension crosses generations in the community: a multi-generational cohort study. Eur Heart J. 2017;38:2300–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luft FC. Twins in cardiovascular genetic research. Hypertension. 2001;37:350–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Franklin SS, Gustin W IV, Wong ND, Larson MG, Weber MA, Kannel WB, et al. Hemodynamic patterns of age-related changes in blood pressure: the Framingham Heart Study. Circulation. 1997;96:308–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gabb GM, Mangoni AA, Anderson CS, Cowley D, Dowden JS, Golledge J, et al. Guideline for the diagnosis and management of hypertension in adults—2016. Med J Aust. 2016;205:85–9.

    Article 
    PubMed 

    Google Scholar
     

  • Forouzanfar MH, Afshin A, Alexander LT, Anderson HR, Bhutta ZA, Biryukov S, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. lancet. 2016;388:1659–724.

    Article 

    Google Scholar
     

  • Sorato MM, Davari M, Kebriaeezadeh A, Sarrafzadegan N, Shibru T, Fatemi B. Reasons for poor blood pressure control in eastern sub-Saharan Africa: looking into 4P’s (primary care, professional, patient, and public health policy) for improving blood pressure control: a scoping review. BMC Cardiovascular Disord. 2021;21:1–15.


    Google Scholar
     

  • Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation. 2016;134:441–50.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maginga J, Guerrero M, Koh E, Holm Hansen C, Shedafa R, Kalokola F, et al. Hypertension control and its correlates among adults attending a hypertension clinic in Tanzania. J Clin Hypertens. 2016;18:207–16.

    Article 

    Google Scholar
     

  • Gjødsbøl IM, Winkel BG, Bundgaard H. Personalized medicine and preventive health care: Juxtaposing health policy and clinical practice. Crit Public Health. 2021;31:327–37.

    Article 

    Google Scholar
     

  • Golubnitschaja O, Kinkorova J, Costigliola V. Predictive, preventive and personalised medicine as the hardcore of ‘Horizon 2020’: EPMA position paper. EPMA J. 2014;5:1–29.

    Article 

    Google Scholar
     

  • Lauc G, Essafi A, Huffman JE, Hayward C, Knežević A, Kattla JJ, et al. Genomics meets glycomics—the first GWAS study of human N-glycome identifies HNF1α as a master regulator of plasma protein fucosylation. PLoS Genet. 2010;6:e1001256.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adua E, Memarian E, Russell A, Trbojević-Akmačić I, Gudelj I, Jurić J, et al. High throughput profiling of whole plasma N-glycans in type II diabetes mellitus patients and healthy individuals: A perspective from a Ghanaian population. Arch Biochem Biophysics. 2019;661:10–21.

    Article 
    CAS 

    Google Scholar
     

  • Ma Q, Adua E, Boyce MC, Li X, Ji G, Wang W. IMass time: The future, in future! OMICS J Integr Biol. 2018;22:679–95.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, Klarić L, Yu X, Thaqi K, Dong J, Novokmet M, et al. The association between glycosylation of immunoglobulin G and hypertension: a multiple ethnic cross-sectional study. Medicine. 2016;95:e3379

  • Kifer D, Louca P, Cvetko A, Deriš H, Cindrić A, Grallert H, et al. N-glycosylation of immunoglobulin G predicts incident hypertension. J Hypertens. 2021;39:2527–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Egan BM. Plasma lipidomic profile signature of hypertension in mexican american families. Hypertension. 2013;62:453–4

  • Wallbach M, Koziolek MJ. Baroreceptors in the carotid and hypertension—systematic review and meta-analysis of the effects of baroreflex activation therapy on blood pressure. Nephrol Dialysis Transplant. 2018;33:1485–93.

    CAS 

    Google Scholar
     

  • Beevers G, Lip GY, O’Brien E. The pathophysiology of hypertension. BMJ 2001;322:912–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mayet J, Hughes A. Cardiac and vascular pathophysiology in hypertension. Heart. 2003;89:1104–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Craft J, Gordon C, Huether SE, McCance KL, Brashers VL. Understanding pathophysiology-ANZ adaptation: Elsevier Health Sciences. 2015.

  • Fernandez G, Lee JA, Liu LC, Gassler JP. The Baroreflex in Hypertension. Curr Hypertens Rep. 2015;17:19.

    Article 
    PubMed 

    Google Scholar
     

  • Russell A, Adua E, Ugrina I, Laws S, Wang W. Unravelling immunoglobulin G Fc N-glycosylation: a dynamic marker potentiating predictive, preventive and personalised medicine. Int J Mol Sci. 2018;19:390.

    Article 
    PubMed Central 

    Google Scholar
     

  • Ikebe M. Regulation of the function of mammalian myosin and its conformational change. Biochem Biophys Res Commun. 2008;369:157–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walsh MP. Vascular smooth muscle myosin light chain diphosphorylation: mechanism, function, and pathological implications. IUBMB life. 2011;63:987–1000.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Touyz RM, Schiffrin EL. Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev. 2000;52:639–72.

    CAS 
    PubMed 

    Google Scholar
     

  • Kunz R, Kreutz R, Beige J, Distler A, Sharma AM. Association between the angiotensinogen 235T-variant and essential hypertension in whites: a systematic review and methodological appraisal. Hypertension. 1997;30:1331–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Staessen JA, Kuznetsova T, Wang JG, Emelianov D, Vlietinck R, Fagard R. M235T angiotensinogen gene polymorphism and cardiovascular renal risk. J Hypertens. 1999;17:9–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Timberlake DS, O’Connor DT, Parmer RJ. Molecular genetics of essential hypertension: recent results and emerging strategies. Curr Opin Nephrol Hypertens. 2001;10:71–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu X, Chang Y-PC, Yan D, Weder A, Cooper R, Luke A, et al. Associations between hypertension and genes in the renin-angiotensin system. Hypertension. 2003;41:1027–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20:467–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat Rev Genet. 2006;7:85–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conrad DF, Hurles ME. The population genetics of structural variation. Nat Genet. 2007;39:S30–S6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morris BJ. Blood pressure genome-wide association studies, missing heritability, and omnigenics. Circ Cardiovasc Genet. 2017;10:e001943.

  • MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucl Acids Res. 2017;45:D896–D901.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41:666–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ehret G, Munroe P, Rice K, Bochud M, Johnson A, Chasman D, et al. International Consortium for Blood Pressure Genome-Wide Association StudiesGenetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 2011;478:103–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Warren HR, Evangelou E, Cabrera CP, Gao H, Ren M, Mifsud B, et al. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet. 2017;49:403–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takeuchi F, Akiyama M, Matoba N, Katsuya T, Nakatochi M, Tabara Y, et al. Interethnic analyses of blood pressure loci in populations of East Asian and European descent. Nat Commun. 2018;9:1–16.

    Article 
    CAS 

    Google Scholar
     

  • Weedon MN, Lango H, Lindgren CM, Wallace C, Evans DM, Mangino M, et al. Genome-wide association analysis identifies 20 loci that influence adult height. Nat Genet. 2008;40:575–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang J, Zeng J, Goddard ME, Wray NR, Visscher PM. Concepts, estimation and interpretation of SNP-based heritability. Nat Genet. 2017;49:1304–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kelly TN, Sun X, He KY, Brown MR, Taliun SAG, Hellwege JN, et al. Insights From a Large-Scale Whole-Genome Sequencing Study of Systolic Blood Pressure, Diastolic Blood Pressure, and Hypertension. Hypertension. 2022: https://doi.org/10.1161/HYPERTENSIONAHA. 122.19324.

  • Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet. 2018;50:1412–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Org E, Eyheramendy S, Juhanson P, Gieger C, Lichtner P, Klopp N, et al. Genome-wide scan identifies CDH13 as a novel susceptibility locus contributing to blood pressure determination in two European populations. Hum Mol Genet. 2009;18:2288–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyaki K, Htun N, Song Y, Ikeda S, Muramatsu M, Shimbo T. The combined impact of 12 common variants on hypertension in Japanese men, considering GWAS results. J Hum Hypertens. 2012;26:430–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adeyemo A, Gerry N, Chen G, Herbert A, Doumatey A, Huang H, et al. A genome-wide association study of hypertension and blood pressure in African Americans. PLoS Genet. 2009;5:e1000564.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 2011;478:103–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Padmanabhan S, Dominiczak AF. Genomics of hypertension: the road to precision medicine. Nat Rev Cardiol. 2021;18:235–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maj C, Salvi E, Citterio L, Borisov O, Simonini M, Glorioso V, et al. Dissecting the polygenetic basis of primary hypertension: identification of key pathway-specific components. Front Cardiovasc Med. 2022:9:178.

  • Schwarzacher T, Heslop-Harrison JP. Direct fluorochrome-labeled DNA probes for direct fluorescent in situ hybridization to chromosomes. Protocols for Nucleic Acid Analysis by Nonradioactive Probes: Springer. 1994;167–76.

  • Bishop R. Applications of fluorescence in situ hybridization (FISH) in detecting genetic aberrations of medical significance. Biosci Horiz. 2010;3:85–95.

    Article 
    CAS 

    Google Scholar
     

  • Van ElCG, Cornel MC, Borry P, Hastings RJ, Fellmann F, Hodgson SV, et al. Whole-Genome sequencing health care. Eur J Hum Genet. 2013;21:580–4.

  • Wang XJ, Xu XQ, Sun K, Liu KQ, Li SQ, Jiang X, et al. Association of rare PTGIS variants with susceptibility and pulmonary vascular response in patients with idiopathic pulmonary arterial hypertension. JAMA Cardiol. 2020;5:677–84.

    Article 
    PubMed 

    Google Scholar
     

  • Tran NT, Aslibekyan S, Tiwari HK, Zhi D, Sung YJ, Hunt SC, et al. PCSK9 variation and association with blood pressure in African Americans: preliminary findings from the HyperGEN and REGARDS studies. Front Genet. 2015;6:136.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He KY, Li X, Kelly TN, Liang J, Cade BE, Assimes TL, et al. Leveraging linkage evidence to identify low-frequency and rare variants on 16p13 associated with blood pressure using TOPMed whole genome sequencing data. Hum Genet. 2019;138:199–210.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sung YJ, Basson J, Cheng N, Nguyen KDH, Nandakumar P, Hunt SC, et al. The role of rare variants in systolic blood pressure: analysis of ExomeChip data in HyperGEN African Americans. Hum Hered. 2015;79:20–7.

    Article 
    PubMed 

    Google Scholar
     

  • Kim YK, Hwang MY, Kim YJ, Moon S, Han S, Kim BJ. Evaluation of pleiotropic effects among common genetic loci identified for cardio-metabolic traits in a Korean population. Cardiovasc Diabetol. 2016;15:1–11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gasperskaja E, Kučinskas V. The most common technologies and tools for functional genome analysis. Acta Med Litu. 2017;24:1.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klonoff DC Personalized medicine for diabetes. SAGE Publications; 2008.

  • Pedrotty DM, Morley MP, Cappola TP. Transcriptomic biomarkers of cardiovascular disease. Prog Cardiovascular Dis. 2012;55:64–9.

    Article 
    CAS 

    Google Scholar
     

  • Sutcliffe JG, Milner RJ, Bloom FE, Lerner RA. Common 82-nucleotide sequence unique to brain RNA. Proc Natl Acad Sci. 1982;79:4942–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kralik P, Ricchi M. A basic guide to real time PCR in microbial diagnostics: definitions, parameters, and everything. Front Microbiol. 2017;8:108.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Liu J, Huang B, Xu YM, Li J, Huang LF, et al. Mechanism of alternative splicing and its regulation. Biomed Rep. 2015;3:152–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Y, Fan J, Zhu H, Ji L, Fan W, Kapoor I, et al. Aberrant splicing induced by dysregulated rbfox2 produces enhanced function of CaV1. 2 calcium channel and vascular myogenic tone in hypertension. Hypertension. 2017;70:1183–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Basu M, Sharmin M, Das A, Nair NU, Wang K, Lee JS, et al. Prediction and subtyping of hypertension from pan-tissue transcriptomic and genetic analyses. Genetics. 2017;207:1121–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marques FZ, Campain AE, Yang YHJ, Morris BJ. Meta-analysis of genome-wide gene expression differences in onset and maintenance phases of genetic hypertension. Hypertension. 2010;56:319–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeller T, Schurmann C, Schramm K, Müller C, Kwon S, Wild PS, et al. Transcriptome-wide analysis identifies novel associations with blood pressure. Hypertension. 2017;70:743–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Romanoski CE, Qi X, Sangam S, Vanderpool RR, Stearman RS, Conklin A, et al. Transcriptomic profiles in pulmonary arterial hypertension associate with disease severity and identify novel candidate genes. Pulm Circulation. 2020;10:2045894020968531.

    Article 

    Google Scholar
     

  • Huan T, Esko T, Peters MJ, Pilling LC, Schramm K, Schurmann C, et al. A meta-analysis of gene expression signatures of blood pressure and hypertension. PLoS Genet. 2015;11:e1005035.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chon H, Gaillard CA, van der Meijden BB, Dijstelbloem HM, Kraaijenhagen RJ, van Leenen D, et al. Broadly altered gene expression in blood leukocytes in essential hypertension is absent during treatment. Hypertension. 2004;43:947–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adua E, Russell A, Roberts P, Wang Y, Song M, Wang W. Innovation analysis on postgenomic biomarkers: Glycomics for chronic diseases. OMICS J Integr Biol. 2017;21:183–96.

    Article 
    CAS 

    Google Scholar
     

  • Adua E, Memarian E, Russell A, Trbojević-Akmačić I, Gudelj I, Jurić J, et al. Utilization of N-glycosylation profiles as risk stratification biomarkers for suboptimal health status and metabolic syndrome in a Ghanaian population. Biomark Med. 2019;13:1273–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trombetta ES. The contribution of N-glycans and their processing in the endoplasmic reticulum to glycoprotein biosynthesis. Glycobiology. 2003;13:77R–91R.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reusch D, Haberger M, Kailich T, Heidenreich A-K, Kampe M, Bulau P, et al., editors. High-throughput glycosylation analysis of therapeutic immunoglobulin G by capillary gel electrophoresis using a DNA analyzer. MAbs; 2014: Taylor & Francis.

  • Huffman JE, Pučić-Baković M, Klarić L, Hennig R, Selman MH, Vučković F, et al. Comparative performance of four methods for high-throughput glycosylation analysis of immunoglobulin G in genetic and epidemiological research. Mol Cell Proteom. 2014;13:1598–610.

    Article 
    CAS 

    Google Scholar
     

  • Fellenberg M, Behnken HN, Nagel T, Wiegandt A, Baerenfaenger M, Meyer B. Glycan analysis: Scope and limitations of different techniques—A case for integrated use of LC-MS (/MS) and NMR techniques. Anal Bioanal Chem. 2013;405:7291–305.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng S, Du YQ, Zhang L, Zhang L, Feng RR, Liu SY. Analysis of serum metabolic profile by ultra-performance liquid chromatography-mass spectrometry for biomarkers discovery: application in a pilot study to discriminate patients with tuberculosis. Chin Med J. 2015;128:159.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nováková L, Matysová L, Solich P. Advantages of application of UPLC in pharmaceutical analysis. Talanta. 2006;68:908–18.

    Article 
    PubMed 

    Google Scholar
     

  • Emwas AH, Roy R, McKay RT, Tenori L, Saccenti E, Gowda G, et al. NMR spectroscopy for metabolomics research. Metabolites. 2019;9:123.

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Gao Q, Dolikun M, Štambuk J, Wang H, Zhao F, Yiliham N, et al. Immunoglobulin GN-Glycans as Potential Postgenomic Biomarkers for Hypertension in the Kazakh Population. OMICS J Integr Biol. 2017;21:380–9.

    Article 
    CAS 

    Google Scholar
     

  • Robajac D, Vanhooren V, Masnikosa R, Miković Ž, Mandić V, Libert C, et al. Preeclampsia transforms membrane N-glycome in human placenta. Exp Mol Pathol. 2016;100:26–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez J-C, et al. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Bio/Technol. 1996;14:61–5.

    CAS 

    Google Scholar
     

  • Tyers M, Mann M. From genomics to proteomics. Nature 2003;422:193–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gstaiger M, Aebersold R. Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet. 2009;10:617–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975;250:4007–21.

    Article 
    PubMed 

    Google Scholar
     

  • Graves PR, Haystead TA. Molecular biologist’s guide to proteomics. Microbiol Mol Biol Rev. 2002;66:39–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thongboonkerd V, Klein JB. Proteomics and hypertension. Proteom Nephrol. 2004;141:245–56.

    Article 
    CAS 

    Google Scholar
     

  • Matafora V, Lanzani C, Zagato L, Manunta P, Zacchia M, Trepiccione F, et al. Urinary proteomics reveals key markers of salt sensitivity in hypertensive patients during saline infusion. J Nephrol. 2021;34:739–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de la Cuesta F, Baldan-Martin M, Moreno-Luna R, Alvarez-Llamas G, Gonzalez-Calero L, Mourino-Alvarez L, et al. Kalirin and CHD7: novel endothelial dysfunction indicators in circulating extracellular vesicles from hypertensive patients with albuminuria. Oncotarget. 2017;8:15553.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuznetsova T, Mischak H, Mullen W, Staessen JA. Urinary proteome analysis in hypertensive patients with left ventricular diastolic dysfunction. Eur Heart J. 2012;33:2342–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin X, Xia L, Wang LS, Shi JZ, Zheng Y, Chen WL, et al. Differential protein expression in hypertrophic heart with and without hypertension in spontaneously hypertensive rats. Proteomics. 2006;6:1948–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Delbosc S, Haloui M, Louedec L, Dupuis M, Cubizolles M, Podust VN, et al. Proteomic analysis permits the identification of new biomarkers of arterial wall remodeling in hypertension. Mol. 2008;14:383–94.

    CAS 

    Google Scholar
     

  • Lange M, Ni Z, Criscuolo A, Fedorova M. Liquid chromatography techniques in lipidomics research. Chromatographia. 2019;82:77–100.

    Article 
    CAS 

    Google Scholar
     

  • Karantonis HC, Nomikos T, Demopoulos CA. Triacylglycerol metabolism. Curr Drug Targets. 2009;10:302–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahmadian M, Duncan RE, Jaworski K, Sarkadi-Nagy E, Sook Sul H. Triacylglycerol metabolism in adipose tissue. Future Lipido. 2007;2:229–37.

    Article 
    CAS 

    Google Scholar
     

  • Surma MA, Herzog R, Vasilj A, Klose C, Christinat N, Morin‐Rivron D, et al. An automated shotgun lipidomics platform for high throughput, comprehensive, and quantitative analysis of blood plasma intact lipids. Eur J Lipid Sci Technol. 2015;117:1540–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandra K, dos Santos Pereira A, Vanhoenacker G, David F, Sandra P. Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry. J Chromatogr A. 2010;1217:4087–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herzog R, Schuhmann K, Schwudke D, Sampaio JL, Bornstein SR, Schroeder M, et al. LipidXplorer: a software for consensual cross-platform lipidomics. PloS One. 2012;7:e29851.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kulkarni H, Meikle PJ, Mamtani M, Weir JM, Barlow CK, Jowett JB, et al. Plasma lipidomic profile signature of hypertension in Mexican American families: specific role of diacylglycerols. Hypertension. 2013;62:621–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spijkers LJ, van den Akker RF, Janssen BJ, Debets JJ, De Mey JG, Stroes ES, et al. Hypertension is associated with marked alterations in sphingolipid biology: a potential role for ceramide. PLoS One. 2011;6:e21817.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang XC, Goldberg IJ, Park TS. Sphingolipids and cardiovascular diseases: lipoprotein metabolism, atherosclerosis and cardiomyopathy. Adv Exp Med Biol. 2011:721:19–39.

  • Graessler J, Schwudke D, Schwarz PE, Herzog R, Shevchenko A, Bornstein SR. Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients. PLoS one. 2009;4:e6261.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu J, de Vries PS, Del Greco MF, Johansson Å, Schraut KE, Hayward C, et al. A multi-omics study of circulating phospholipid markers of blood pressure. Sci Rep. 2022;12:1–13.


    Google Scholar
     

  • Hu C, Kong H, Qu F, Li Y, Yu Z, Gao P, et al. Application of plasma lipidomics in studying the response of patients with essential hypertension to antihypertensive drug therapy. Mol Biosyst. 2011;7:3271–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Currie G, Delles C. The future of “Omics” in hypertension. Can J Cardiol. 2017;33:601–10.

    Article 
    PubMed 

    Google Scholar
     

  • El Kennani S, Crespo M, Govin J, Pflieger D. Proteomic analysis of histone variants and their PTMs: strategies and pitfalls. Proteomes 2018;6:29.

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • https://www.nature.com/articles/s41371-022-00769-8